Chapter 10 Quadratic Relations and Conic Sections

We will be exploring conic sections, including parabolas and circles

Section 10-1
 Exploring Conic Sections

Students will be able to graph and identify conic sections.

Parabolas form a family of curves that belong to a larger family, conic sections.

Each curve has its own shape and properties

Its many lines of symmetry make a circle a special kind of an ellipse. In general, an ellipse has only two lines of symmetry.

Graph: $2 x^{2}+y^{2}=18$. What are the lines of symmetry, domain and range?
$y=0$
$\alpha=0$
$\alpha=0$
Graph on your graphing calcs

$$
\begin{aligned}
& \text { and sketch in here: } \\
& \qquad \text { b: }-3 \leq x \leq 3 \\
& B \cdot-4 . z \leq y \leq 4.2
\end{aligned}
$$

Not all conic sections will have one smooth curve. The hyperbola consists of two separate curves called branches.

What is the graph of $x^{2}-y^{2}=9$? What are the domain and range?

In this chapter, we will be looking more closely at circles and parabolas. You should be able to identify a curve by its shape and its features.
4. What are the center and intercepts of the conic section? What are
the domain and range?

pg. 619 \#43.
Graph each circle with the given radius or diameter so that the center is at the origin. The write the equation for the circle.
diameter 2.5

$$
\begin{aligned}
& x^{2}+y 7=r^{2} \\
& \frac{2.5}{2}=1.25 \\
& x^{2}+y^{2}=1.25^{2} \\
& r^{2}+y=1.56
\end{aligned}
$$

10.1 Homework

pg. 618-619

$$
\text { \#8 - } 20 \text { (4th), 22-33 all, }
$$

$$
38-42 \text { evens }
$$

