12.3.notebook May 03, 2017

Algebra II

Section 12-3

Determinants and Inverses

Goal: to find the inverse of a matrix

The inverse of a matrix is used to solve problems involving matrices.

The product of a matrix and its multiplicative inverse will give the multiplicative identity matrix. Not all matrices have inverses.

A <u>square matrix</u> is one where it has the same number of rows as columns.

For a n x n matrix, the multiplicative identity matrix is an n x n matrix I with 1's along the main diagonal and 0's elsewhere.

$$A = \begin{vmatrix} 1 & 1 \\ 5 & 4 \end{vmatrix}$$

$$B = \begin{vmatrix} -4 & 1 \\ 5 & -1 \end{vmatrix}$$
Are A and B inverses?
$$AB = I \text{ and } BA = I$$

$$\begin{bmatrix} 1 & 1 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} -4 & 1 \\ 5 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -4+5 & 1+1 \\ -20+20 & 5+4 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

12.3.notebook May 03, 2017

Every square matrix has a determinant.

For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ det A = ad - bc $det A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

The determinant can help determine in a matrix has an inverse, and if it does exist, to help you find the inverse.

If the det A = 0, then the matrix has no inverse. If the detA is not 0 then A^{-1} exists.

$$A^{-1} = \frac{1}{\det A} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$$

12.3.notebook May 03, 2017

Does the following have an inverse? If so, find it.

$$A = \begin{vmatrix} 4 & 2 \\ 3 & 2 \end{vmatrix} \quad B = \begin{vmatrix} 2 & 5 \\ 4 & 10 \end{vmatrix}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 4 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -6 - 2 \\ 6 & 10 \end{cases}$$

$$det = \begin{cases} -$$

Find the inverse:

$$C = \begin{vmatrix} 7 & 4 \\ 5 & 3 \end{vmatrix}$$

$$\det C = \begin{vmatrix} -1 & -1 & 3 & -4 \\ -5 & 7 & 4 \end{vmatrix}$$

$$4 - 5 - 7 = \begin{bmatrix} -3 & -4 \\ -5 & 7 \end{bmatrix}$$

Hwk: pg 788 - 789 #8 - 20 (4th), 28 - 32 evens, 42, 44, 52