14-5.notebook April 18, 2017

Algebra II
Section 14-5
Law of Cosines

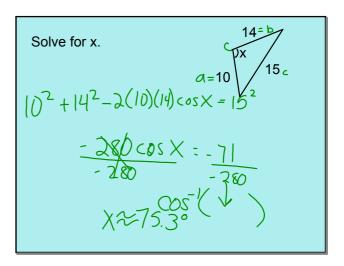
Goal: to use the Law of Cosines to solve triangles

Review of previous topics:

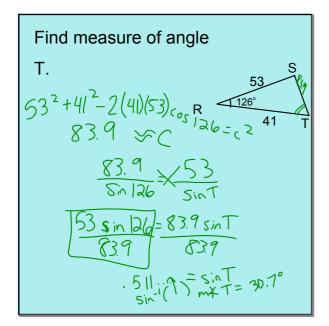
- -SohCahToa for 90 degree triangles only
- -Law of Sines when you know an angle, a corresponding side and one other measurement

Today we are going to talk about the <u>Law of</u> <u>Cosines</u> (for either of these two situations)

- you know two sides and the angle between
- -you know the three side measurements


In this triangle, why
can't we use the
Trig ratios or Law of
Sines?

C


Law of Cosines: $a^2 + b^2 - 2abcosC = c^2$

Law of Cosines: $a^2 + b^2 - 2abcosC = c^2$ Solve for c c = 15 c = 16.2 c = 16.2c = 16.2

The lengths of two sides of a triangle are 8 and 10 and the angle between them is 40 degrees. What is the length of the 3rd side? $a^{2}+b^{2}-2ab\cos c = c^{2}$ $8^{2}+10^{2}-2(8)(10)\cos 40=c^{2}$

14-5.notebook April 18, 2017

Hwk: pg 939 - 940 #10-20 evens, 27, 30, 31, 34, 35, 40, 46, 51