Journal Entry:

Explain what it means for two variables to be directly related. Then, give an example of a function that represents a direct variation.

Section 2-3 Linear Functions and Slope-Intercept Form

Students will be able to -graph linear functions -write equations of lines

Drag the terms to the correct place.

Movement on a coordinate plane can be described using how far you go vertically and how far you go horizontally to get from point to point.

This is called the slope of a line.

<u>vertical change</u> = slope horizontal change $M = \frac{\lambda - \lambda}{\lambda}$

 $\frac{y_2 - y_1}{x_2 - x_1}$

Another way to remember it?

Write one ordered pair on each of your two Post-It notes.

Pass one to the left and one to the right.

Find the slope of the ordered pairs you ended up with.

$$(5,4)$$
 and $(8,1)$

Will it matter which one we use first?

$$M = \frac{\sqrt{-y}}{x-x} = \frac{4-1}{5-8} = \frac{3}{3}$$
 $M = -1$

A function whose graph is a line is a linear function.

Linear equation example:

$$y = -2x + 6$$

A solution to a linear equation is any ordered pair that makes the equation true.

Slope-Intercept Form:

m-slope b-y-intercept

Drag the terms:

What is the equation of the line in slope-intercept form?

Write the equation in slope-intercept form. What are the slope and the y-intercept?

$$3x + 2y = 18$$
 $-3x - 3x = 100$

$$\frac{3y^{2}-3x+18}{2}$$

Hwk:

pg. 78 - 80 #12, 15, 26, 27, 34, 36, 43, 44, 46 - 62 evens