

Section 4-1 **Quadratic Functions** and Transformations

Students will be able to identify and graph quadratic functions.

Define:

parabola - U-Shaped graph for a quad function f(x) = ax2+bx+c Picture: Vertex Axis of Symmetry

Graph on the same graph as the parent function. Describe the rule for the effect that the number has on the function .:

1.
$$f(x) = -\frac{1}{3}x^2$$

(x)=x2 reflect about x
Vert comp by $\frac{1}{3}$
3. $f(x) = x^2 + 3$
4. $f(x) = -(x + 1)^2$

2.
$$f(x) = (x - 4)^2$$

4.
$$f(x) = -(x + 1)^2$$

5.
$$f(x) = 2x^2 - 1$$

Vertex form:

$$x = h$$

Name the transformations:

$$f(x) = -2(x - 8)^2 + 3$$

Identify the vertex and axis of symmetry.

If the multiple of x^2 is greater than 1, it is a vertical stretch. If it is between 0 and 1, it is a vertical compression. If it is a negative, then it reflects over the x-axis.

$$f(x) = -2(x+1)^2 + 4$$

Vertex: $\left(-\right|,4\right)$

Axis of symmetry: $\chi = -$

Min or Max: Max = 4

Domain: R S Range: $y \le 4$

Find the equation in vertex form for the following.

The bridge is about 500 meters long and 85 meters high.

#49. Write the equation in vertex form: vertex $(1, \frac{1}{2})$ point $(\frac{1}{2}, -\frac{1}{2})$

$$f(x) = a(x-h)^{2} + K$$

$$y = a(x-1)^{2} + 2$$

$$-5 = a(2-1)^{2} + 2$$

$$-6 = a(1) + 2$$

$$-6 = a+3$$

$$-2$$

$$-7 = 0$$

$$f(x) = -7(x-1)^{2} + 3$$

Hwk: pg. 199-200 #8, 12, 16, 19, 24-36 evens, 40,44, 50, 53