Simplifying square roots:

-√18

pg. 225 #2 - 16 evens

 $\sqrt{200}$

Aug 18-2:52 PM

Section 4-5 **Quadratic Equations**

Students will be able to:

- -solve quadratic equations by factoring
- -solve quadratic equations by graphing

Aug 18-2:52 PM

The zeros of a function are where the graph intersects the x-axis.

The zeros of a fuction are also called roots.

Aug 18-2:52 PM

Zero Product Property:

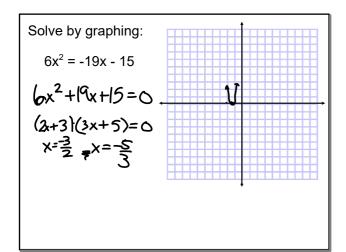
if
$$ab = 0$$
, then $a = 0$ or $b = 0$

 $10^{2} + 60^{2} - 40 = 0$

(x+10)(x-4)=0

Aug 18-2:52 PM

Solve:


$$x^{2} + 5x = 0$$

 $x(x+5)=0$
 $x=6$ $x=-5$
 $x^{2} - 7x = -12$
 $+12 + 12$
 $x^{2} - 7x + 12 = 0$
 $(x-3)(x-4) = 0$

Solve by factoring:

$$2x^2 = 8x$$

Aug 18-2:52 PM Nov 8-1:53 PM

Aug 18-2:52 PM

The function $y = -0.03x^2 + 1.60x$ models the path of a kicked soccer ball. The height is y, the distance is x, and both a) How far does the ball travel? b) How high does the ball go? 21.3 m

Aug 18-2:52 PM

Solve:

$$\begin{cases} y = x^2 - 2 \\ y = 3x^2 - 4x - 2 \end{cases}$$

 $0=2x^{2}-4x$ 0=2x(x-2)X=0,2

Nov 8-1:58 PM

You can also use the roots to find a possible quadratic model.

What quadratic function could be modeled by the zeros of a function at -5 and 8?

X=-5.8 0=(x+5)(x-8) $0=x^2-3x-40$ $y=x^2-3x-40$

Aug 18-2:52 PM

Hwk:

pg. 229 - 231 #10 - 16 evens, 28, 34, 36, 40, 41, 48, 50, 54, 55, 59, 61, 62, 68, 70