Journal Entry:

If a quadratic equation has a pair of values of 6 and -3 as it's roots (zeros), what is the quadratic equation?

What would the quadratic equation be that has -6 as its only root?

Section 4-6 Completing the Square

Students will be able to:

- -solve equations by completing the square
- -rewrite functions by completing the square

You can solve equations that contain a perfect square by taking square roots.

$$7x^{2} - 10 = 25$$
 $+ 10 = 25$
 $+ 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$
 $- 10 = 25$

$$(x-4)^2 = 15$$

Write as a perfect square trinomial to solve:

$$x^2 - 14x + 49 = 25$$

$$(x-7)^2 = \sqrt{25}$$

Hwk: pg. 237

#12 - 26 evens

Another way to solve quadratic equations is to write them as the square of a binomial. This can be done by completing the square, forming a perfect square trinomial.

Remember, a perfect square trinomial has the first and third terms that are perfect squares and the middle term is twice their products.

If x^2 + bx is not part of a perfect square trinomial, you can use the coefficient b to find c and force it to become a perfect square trinomial. This is called completing the square.

$$x^{2} + (bx)^{2} + (\frac{b}{2})^{2} = (x + \frac{b}{2})^{2}$$

$$x^{2} + (4x)^{2} + (4x)^{2} = x^{2} + (4x + 4)$$

$$= (x + 7)^{2}$$

Complete the square:

$$x^{2} + 20x + 100 = (x + 10)^{2}$$

 $x^{2} - 4x + 4 = (x - 2)^{2}$

Solve by completing the square:

$$(3)^{2} + 3^{2} + 6x - 3 = 0 \times 3$$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(3)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} = 3 + 6$
 $(4)^{2} + 6x + 3^{2} =$

Solve by completing the square.

#68.
$$5x^2 - x = 4$$

$$x^2 - \frac{1}{5}x + (\frac{1}{10})^2 = \frac{1}{100}x + \frac{1}{10$$

Completing the square can be used to write a quadratic in vertex form.

vertex form:
$$y = \alpha(x-h)^2 + K$$

#47. $y = (2x^2 - 8x) + 1$
 $y = 2(x^2 - 4x + 2^2) + 1 - 8$
 $y = 2(x - 2)^2 - 7$
 $y = 2(x - 2)^2 - 7$

Hwk: pg. 237 - 239 #28-44 (4th), 46, 50, 52, 54, 60, 64-72(4th)