Section 4-8 **Complex Numbers**

Students will be able to:

- -identify, graph, and perform operations with complex numbers.
- -find complex number solutions of quadratic equations.

Complex numbers - based on a number whose square is -1.

imaginary unit(i)whose square is -1

Simplify: $\sqrt{18}$ $= \sqrt{-1}$ $\sqrt{18} = \sqrt{-1}$ $= \sqrt{18} = \sqrt{10}$ $= \sqrt{18} = \sqrt{10}$

An imaginary number is in the form a + bi -imaginary and real numbers make up the set called the complex numbers.

Complex Plane

(a, b) represents a + bi

Graph:

3 - 2i

|a + bi| is the distance of the number from the origin in the complex plane.

To add or subtract complex numbers, combine like parts.

$$(7-2i)+(-3+i) = -1$$

4-8.notebook November 17, 2016

Find the quotient:

$$\frac{4 - i \cdot i}{6i \cdot i} = \frac{4i - i^{2}}{6i \cdot i} = \frac{4i \cdot i^{2}}{6i \cdot i} = \frac{4i \cdot i^{2}}{6i \cdot i} = \frac{4i \cdot i^{2}}{6i \cdot i} = \frac{1 + 4i}{6i \cdot i} = \frac{1$$

Solve:

$$3x^2 - x + 2 = 0$$

 $Q = 3$ $X = -(-1) \pm \sqrt{1 + 2}$
 $A = -1$
 $C = 2$
 $A = -1$
 $A = -$

Hwk: pg 253 - 255 #12, 15, 22 - 42 (4th), 48 - 54 (even), 58, 62, 66, 68