Section 5-6 The Fundamental Theorem of Algebra

Students will be able to use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions.

You can factor any polynomial of degree n into n linear factors, but sometimes the factors will involve imaginary numbers.

-The degree of the polynomial tells you how many roots and equation has.

 $y = x^2$ has how many roots?

Aug 18-2:52 PM

Aug 18-2:52 PM

Find the roots of the following:

$$0 = 1/x^{2} - 9$$

$$0 = 1/x^{2} - 9$$

$$0 = x^{2} - 2x + 1$$

$$0 = (x - 1)(x - 1)$$

$$0 = x^{2} + 3x + 1$$

Aug 18-2:52 PM

German mathematician Carl Friedrich Gauss is credited with proving the Fundamental Theorem of Algebra:

If P(x) is a polynomial of degree $n \ge 1$, then P(x) = 0 has exactly n roots, including multiply and imaginary roots.

Aug 18-2:52 PM

What are all of the roots of $x^4 + 2x^3 = 13x^2 - 10x$

$$0 = x^{4} + 2x^{3} - 13x^{2} + 10x$$

$$x = -5, 0, 1, 2$$

Aug 18-2:52 PM

Aug 18-2:52 PM

5-6.notebook January 28, 2014

Concept Summary:

Equivalent ways to state the Fundamental Theorem of Algebra.

- 1. Every polynomial of degree $n \ge 1$ has exactly n roots, including multiple and imaginary roots
- 2. Every polynomial of degree $n \ge 1$ has n linear factors.
- 3. Every polynomial function of degree $n \ge 1$ has at least one complex zero.

Hwk: pg. 322-323 #10 - 38 (4th)

Aug 18-2:52 PM Aug 18-2:52 PM

Aug 18-2:52 PM

Aug 18-2:52 PM

Aug 18-2:52 PM Aug 18-2:52 PM

5-6.notebook January 28, 2014

Aug 18-2:52 PM