Journal Entry:

How is factoring a trinomial in the form $ax^2 + bx + c$ when a is not 1 different from when it is 1? How is it similar?

Section 8-7 **Factoring Special Cases**

Students will be able to factor perfect square trinomials and the difference of two squares.

Remember:

$$(a + b)^{2} = \underbrace{a^{2} + 2ab + b^{2}}_{a}$$

This is a perfect square trinomial.

- The first term is a perfect square
 The last term is a perfect square
- 3. The middle term is twice the product of the two square roots.

We are reverse this multiplication to factor.

To factor a perfect square trinomial:

$$a^{2} + 2ab + b^{2} = (a + b)^{2}$$

 $a^{2} - 2ab + b^{2} = (a - b)^{2}$

Example:

$$x^2 - 8x + 16 = (x - 4)$$
 tart by square rooting first and last terms to get a and b.

Factor:

1.
$$x^{2} \oplus 6x + 9 = (X+3)^{2}$$
 $x = x^{2} = (X+3)^{2}$

2. $4n^{2} - 12n + 9 = (2n-3)^{2}$
 $x = x^{2} = (2n-3)^{2}$

Recall from 8-4 that
$$(a + b)(a - b) = a^2 - b^2$$

 $(x-2)(x+2) = x^2 - 4$

By working in reverse, again, we can factor the difference of two squares.

Oifference of 2 Squares:
$$a^2 - b^2 = (a + b)(a - b)$$

-must be a difference (subtract)

-first and last must be perfect squares

Factor:

$$x^2 - 81$$

 $x = (x + 9)(x - 9)$
Cheek $\Rightarrow x^2 - 9$

Factor: Start by finding the square roots of first and last terms.

$$(5x+8)(5x-8)$$

Remember to always take out the greatest common factor first. Then, look to see if you can further factor the polynomial using any of the methods learned so far.

Factor:

$$\frac{12t^{2}-48}{12(t^{2}-4)}$$

$$12(t+2)(t-2)$$

$$12x^{2}+12x+3$$

$$3(4x^{2}+4x+1)$$

Hwk: pg. 526 - 528 #12 - 20(4th), 22, 28 - 38 (evens), 39, 40, 49, 52, 54