

Graphing: When solving $a x^{2}+b x+c=0$, we are looking for the values of x that we can plug in and get a 0 . This value of 0 is in the place of y, so it is actually asking where on a graph is the y value 0 . This is the x-intercept.

Example:

x-intercepts:
$x=-4$
$x=4$

Note: there are 2 solutions

The solutions of the equation and the x intercepts of the graph are often called the roots of the equation or zeros of the function.

We said that we could also solve quadratic equations by taking the square root. This means use order of operations to get the x^{2} alone, then undo to square by doing the
opposite, square rooting.

Example: Solve:
$m^{2}=36$ $\sqrt{m^{2}}= \pm \sqrt{36}$ $m^{2}-36=0$
$(6)^{2}=36$ $m= \pm 6$

$$
3 x^{2}+15=0
$$

$$
(-6)^{2}=36
$$

$$
-15-15
$$

$$
\frac{3 x^{2}}{3}=\frac{-15}{3}
$$

$\sqrt{x^{2}}= \pm \sqrt{-5}$
cannot +ale e^{20}
the square root of

$$
x^{2}=-5
$$ a negarve \#

No Solution

Solve:

$$
\begin{aligned}
& 4 x^{2}+44=80 \\
&-44-44 \\
& \frac{4 x^{2}}{4}=\frac{36}{4} \\
& x^{2}=9 \quad \sqrt{x^{2}}= \pm \sqrt{9} \\
& x= \pm 3
\end{aligned}
$$

The length of a rectangular prism is 3 times the width. The height of the prism is 5 in. If the volume of the prism is $80 \mathrm{in}^{3}$ what is the length of the prism?

$$
\begin{array}{ll}
\text { prism? } & L=3 \cdot h \\
80=3 w \cdot w \cdot s & w=w
\end{array}
$$

$$
\frac{80}{15}=\frac{15 w^{2}}{15}
$$

$$
w^{2}=5 . \overline{3}
$$

$$
\sqrt{W^{2}}= \pm \sqrt{5.3}
$$

$$
\begin{aligned}
& W= \pm 2.31 \\
& \text { width cannot be negative so } \\
& W=2.31 \text { in } \quad l=3 W=3(2.31)=6.93 \mathrm{in}
\end{aligned}
$$

(3) 100

9-3 Homework

> Pg. 564-565
\#8-28 (4th), 32 - 40 evens,
44-50 evens
QUIZ TOMORROW

Solve:
$x^{2}+7=0$
-7 -7
$x^{2}=-7$
$\sqrt{x^{2}}= \pm \sqrt{-7}$
No Solution
carnot take sp root of a negative \#

$$
\begin{aligned}
& x^{2}+15=15 \\
& -15-15 \\
& x^{2}=0 \\
& \sqrt{x^{2}}=\sqrt[4]{0} \\
& x=0
\end{aligned}
$$

