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Section 9-6
The Quadratic Formula
and Discriminant

Students will be able to:
-solve equations using the quadratic formula
-find the number of solutions of a quadratic
equation.

-You can use the quadratic formula to solve
any quadratic equation in standard form.

If @ +@< + =0, and a is not 0, then the
solutions (roots) are:

~bx+b* —4ac
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-put in your notes

Use the quadratic formula to solve:
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How many solutions does each quadratic
have? How do you know? \L, Many
+imay W Crésges oL .

The Discriminant: —b++b* —4ac
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b? - 4ac is called the discriminant ___~
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If b? - 4ac > 0, then the quadratic has 2
distinct real solutions ( ;4605 2 L ""b

If b? - 4ac = 0 then the equation has 1
real solution (a double root) (W/la ,n,,,;,}

If b? - 4ac < 0, the the equation has 0 real
solutions.  (Never ¢Co<ses)
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Find the discriminant. Then determine the
number of real solutions for each equation by
using the discriminant. (2

9 b - L( o

1) 3¢ -6x+4=0 LY -y()(w)*

>lTyg = ree\ Sds
2) xX*-6x+11=0 (’Q)z~%!\(\0
36-vY = -9
3) X -6x+2=9 .
2 . o (-6) - (=)
x-bx “71 O 2 L+ Z9:r‘m|fb

Use any method to solve.
2x% - 3 = BxK
+6x
Ixt+5x-3 =0
(Zx - U(\( = 35 ==

Which method did you choose? Why?

Hwk: pg 586 - 587
#12, 18, 20, 22,
23 -28 all, 30 - 42 evens
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  Dec 13-11:25 AM      Section 5.6   The Quadratic Equation   and Complex Numbers
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  Dec 13-11:25 AM      The Discriminant:      b 2  - 4ac   is called the discriminant      If b 2  - 4ac > 0, then the quadratic has 2   distinct real solutions      If b 2  - 4ac = 0 then the  equation has 1   real solution (a double root)      If b 2  - 4ac < 0, the the equation has 0 real   solutions.
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  Dec 13-2:29 PM      Find the discriminant.  Then determine the   number of real solutions for each equation by   using the discriminant.      1)  3x 2  -6x + 4 = 0         2)  3x 2  -6x + 3 = 0         3)  3x 2  - 6x + 2 = 0
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  Dec 13-11:25 AM          x 2  = 25         Rational      x 2  = 21      2        x 2  = -21        Complex         Equation 		 Number of Roots 	 Type of Root    Fill in the table below:         This is what we will be   looking at today.
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  Dec 13-11:25 AM      x 2  = -21     Take the square root of both sides      x =  ±√-21     Type this into your calculator.   	 -What does it say?         We need a new type of number to be able to   evaluate this number.
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  Dec 13-11:25 AM      To solve quadratics where we need to take   the square root of a negative number, use   the imaginary number  i .      i  =  √ -1      if we square both sides we get   i  2  = -1     From the previous example:   x =  √ -21, we can write this as  √ -1   √ 21=  i √21        or    x=- i √21 
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  Dec 13-11:25 AM      Use the quadratic formula to solve    6x 2  - 3x + 1 = 0    a=   b=   c=
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  Dec 13-11:25 AM      A  complex number  is any number that   can be written as  a + bi , where  a  and  b  are   real numbers and  i  =  √ -1; a is the  real part    and b is the  imaginary part     a + bi  is called the standard form of a   complex number.
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  Dec 13-11:25 AM      Two complex numbers are equal if their   real parts are equal and if their imaginary   parts are equal.      Example:     #43 (pg. 320)   find x and y   3x - 4iy = 4 + 4i         Real 				 Imaginary   3x = 4 				 -4y = 4
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  Dec 13-11:25 AM      Hwk:  pg 320   #14 - 44 evens
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