9-6.notebook March 26, 2019

Section 9-6 The Quadratic Formula and Discriminant

Students will be able to:

-solve equations using the quadratic formula -find the number of solutions of a quadratic equation. -You can use the quadratic formula to solve any quadratic equation in standard form.

If $ax^2 + bx + c = 0$, and a is not 0, then the solutions (roots) are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

-put in your notes

Use the quadratic formula to solve: $x^{2} - 16x - 36 = 0$ $x^{2} - 16x - 36 = 0$ $x = \begin{vmatrix} x - (-16) \pm \sqrt{(-16)^{2} - 4(1)(-36)} \\ 2 - 16 \end{vmatrix}$ $x = -16 + \sqrt{256 + 144}$ $x = -16 \pm \sqrt{256 + 144}$ x = -

Solve:
$$-\chi^2 + 6\chi = 9$$

 $-\chi^2 + 6\chi = 9$
 $-\chi^2 + 6\chi = 9$

The Discriminant: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $b^2 - 4ac \text{ is called the discriminant}$ If $b^2 - 4ac > 0$, then the quadratic has 2 distinct real solutions (cosses 2 + coss)If $b^2 - 4ac = 0$ then the equation has 1 real solution (a double root) (vecles solution solutions)If $b^2 - 4ac < 0$, the the equation has 0 real solutions. (cosses)

9-6.notebook March 26, 2019

Find the discriminant. Then determine the number of real solutions for each equation by using the discriminant. 3 - 4 c

1)
$$3x^2 - 6x + 4 = 0$$
 $(-6)^2 - 4(3)(4) = 36 - 48 = -12$

2)
$$x^2 - 6x + 11 = 0$$
 $(-6)^2 - 4(1)(11)$
 $36 - 44 = -8$

3)
$$x^2 - 6x + 2 = 9$$
 $-9 - 9$
 $(-6)^2 - 4(1)(-7)$
 $x^2 - (0x - 7 = 0)$
 $3 + 29 = 64$
 $(-6)^2 - 4(1)(-7)$

Use any method to solve.

$$2x^{2} - 3 = -5x$$

$$-5x$$

$$2x^{2} + 5x - 3 = 0$$

$$(2x - 1)(x + 3) = 0$$

$$(x - \frac{1}{2} - 3)$$

Which method did you choose? Why?

Hwk: pg 586 - 587 #12, 18, 20, 22, 23 - 28 all, 30 - 42 evens Sec5.6NB.notebook