Algebra 1 Chapter 10 Review 10.1-10.6

Determine whether the given length can be side lengths of a right triangle

Simplify:
$$\frac{3}{4}\sqrt{14t^3} \cdot \sqrt{28t}$$
 $\frac{372}{2,196}$
 $\frac{3}{4}\sqrt{392t^4} = \frac{3}{4}\sqrt{1962t^4}$
 $\frac{3}{4} \cdot 14t^2\sqrt{2} = \frac{21}{2}t^2\sqrt{2}$

Simplify:

$$(2\sqrt{3} + \sqrt{5})(6\sqrt{5} - 4\sqrt{3})$$

 $|2\sqrt{15} - 8\sqrt{9} + 6\sqrt{25} - 4\sqrt{15}$
 $8\sqrt{15} - 8 \cdot 3 + 6 \cdot 5$
 $8\sqrt{15} - 24 + 30 = 8\sqrt{15} + 6$

Simplify:

$$(\sqrt{3} - 3)(\sqrt{3} - 3)$$

 $(\sqrt{3} + 3)(\sqrt{3} - 3)$
 $(\sqrt{3} + 3)(\sqrt{3} - 3)$
 $\sqrt{9} - 3\sqrt{3} - 3\sqrt{3} + 9$
 $\sqrt{9} - 3\sqrt{3} - 3\sqrt{3} + 9$
 $\sqrt{9} - 3\sqrt{3} - 3\sqrt{3} - 9$
 $\sqrt{-2} + \sqrt{3}$

Solve the radical equation. Check you solution. $4 + \sqrt{\frac{y^2}{16}} = 7$ -4 $\sqrt{\frac{y^2}{16}} = 3$ $\sqrt[4]{\frac{y^2}{16}} = 4$ $\sqrt[4]{\frac{12^2}{16}} = 4$ $\sqrt[4]{\frac{12^2}{16}} = 4$ $\sqrt[4]{\frac{12^2}{16}} = 4$

Solve the radical equation. Check you solution. $n\sqrt{2} = \sqrt{9} - 3n$ $(n\sqrt{2})^{2} = (\sqrt{9} - 3n)^{2}$ $n^{2}\sqrt{2} = 9 - 3n$ $2n^{2} + 3n - 9 = 0$ (n + 3)(2n - 3) = 0 $n + 3 = 0 \quad 2n - 3 = 0$ n +

Simplify:

$$6\sqrt{8} - 2\sqrt{50}$$

 $6\sqrt{4} - 2\sqrt{25 \cdot 2}$
 $6 \cdot 2\sqrt{2} - 2 \cdot 5\sqrt{2}$
 $12\sqrt{2} - 10\sqrt{2}$
 $2\sqrt{2}$

Simplify:
$$\sqrt{3}(\sqrt{12}+4)$$

 $\sqrt{3}6 + 4\sqrt{3}$
 $6 + 4\sqrt{3}$

Chapter 10 Review Homework:

Page 657 #3, 5, 6-20 evens, 23-27 all, 37