

| Find the missing side length |
| :--- | :--- |
| $a^{2}+b^{2}=c^{2}$ |
| $x^{2}+15^{2}=21^{2}$ |
| $x=\sqrt{211^{2}-15^{2}} \approx 14.7$ |
| |

Simplify:

$$
\begin{aligned}
& \frac{3}{4} \sqrt{14 t^{3}} \cdot \sqrt{28 t} \frac{392}{2,196}-14^{2} \\
& \frac{3}{4} \sqrt{392 t^{4}}=\frac{3}{4} \sqrt{176 \cdot 2 t^{4}} \\
& \frac{3}{4} \cdot 14 t^{2} \sqrt{2}=\frac{21}{2} t^{2} \sqrt{2}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& (2 \sqrt{3}+\sqrt{5})(6 \sqrt{5}-4 \sqrt{3)} \\
& 12 \sqrt{15}-8 \sqrt{9}+6 \sqrt{25}-4 \sqrt{15} \\
& 8 \sqrt{15}-8 \cdot 3+6 \cdot 5 \\
& 8 \sqrt{15}-24+30=815+6
\end{aligned}
$$

simplify:

$$
\begin{gathered}
(\sqrt{3}-3)(\sqrt{3}-3) \\
(\sqrt{3}+3)(\sqrt{3}-3) \\
\frac{\sqrt{9}-3 \sqrt{3}-3 \sqrt{3}+9}{\sqrt{9}-3 \sqrt{3}+3 \sqrt{3}-9}=\frac{3-6 \sqrt{3}+9}{3-9}=\frac{12-6 \sqrt{3}}{-6} \\
-2+\sqrt{3}
\end{gathered}
$$

Solve the radical equation. Check you solution.

$$
\begin{aligned}
& 4+\sqrt{\frac{y^{2}}{16}}=7 \\
& -4 \\
& \sqrt{\frac{y^{2}}{16}}=3 \quad \frac{\sqrt{y^{2}}}{\sqrt{16}}=3 \quad \frac{y}{4}=3 \\
& 4 \cdot \frac{y}{4}=3 \cdot 4 \quad y=12 \sqrt{2} \\
& 4+\sqrt{\frac{12^{2}}{16}}=4+\sqrt{\frac{144}{16}}=4+\sqrt{9}=4+3 \\
& 7=7
\end{aligned}
$$

State the domain. Then graph the equation.

$$
\begin{gathered}
y=\sqrt{x-8} \\
x-8 \geq 0 \\
+8+8 \\
D: x \geq 8
\end{gathered}
$$

```
Suppose a right triangle ABC has right angle C. Find the measures of the other sides to the nearest tenth.
\[
\text { Length of } \overline{A B}=12 \text {, measure of angle } A=34^{\circ}
\]
```



```
\[
\begin{aligned}
& \sin (34)=\frac{x}{12} \\
& x=12 \sin (34)=6.7 \\
& \cos (34)=\frac{4}{12} \\
& y=12 \cos (34)=9.9
\end{aligned}
\]
```

Solve the radical equation. Check you solution.

$$
\begin{gathered}
n \sqrt{2}=\sqrt{9-3 n} \\
(n \sqrt{2})^{2}=(\sqrt{9-3 n})^{2} \\
n^{2}+2=9-3 n \\
2 n^{2}+3 n-9=0 \\
(n+3)(2 n-3)=0 \\
n+3=0 \quad 2 n-3=0 \\
n=5 \quad n=3 / 2 \\
-3 \sqrt{2}=\sqrt{9-3(-3)} \quad \frac{3}{2} \sqrt{2}=\sqrt{9-3\left(\frac{3}{2}\right)} \\
-3 \sqrt{2}=\sqrt{18} \quad 2.12=2.12 \\
-3 \sqrt{2} \neq 3 \sqrt{2} \quad
\end{gathered}
$$

Find the sine, cosine, and tangent of every acute angle.
$\sin (T)=\frac{12}{20}$
$\cos (T)=\frac{16}{20}$
$\tan (T)=\frac{12}{16}$

$$
\begin{aligned}
& \sin (s)=\frac{16}{20} \\
& \cos (s)=\frac{12}{20} \\
& \tan (s)=\frac{16}{12}
\end{aligned}
$$

Son Can Toad

Simplify:

$$
\begin{gathered}
6 \sqrt{8}-2 \sqrt{50} \\
6 \sqrt{4 \cdot 2}-2 \sqrt{25 \cdot 2} \\
6 \cdot 2 \sqrt{2}-2 \cdot 5 \sqrt{2} \\
12 \sqrt{2}-10 \sqrt{2} \\
2 \sqrt{2}
\end{gathered}
$$

SIMPLIFY:

$$
\begin{aligned}
& 5 \sqrt{18}+4 \sqrt{32} \\
& 5 \sqrt{9 \cdot 2}+4 \sqrt{16 \cdot 2} \\
& 5 \cdot 3 \sqrt{2}+4 \cdot 4 \sqrt{2} \\
& 15 \sqrt{2}+16 \sqrt{2}=31 \sqrt{2}
\end{aligned}
$$

Chapter 10 Review Homework:
Page 657
\#3, 5, 6-20 evens, 23-27 all, 37

