Chapter 8 Review

Name the polynomial based on degree and number of terms:

$$
3 b^{3}-9 b^{2}+2
$$

Number of Terms	
1	Monomial
2	Binomial
3	Trinomial
Degree	
0	Constant
1	Linear
2	Quadratic
3	Cubic
4 \& up	$4^{\text {th }}$ degree

Name the polynomial based on degree and number of terms:
Simplify and write in standard form. Then name based on degree and number of terms:

$|$| Number of Terms | |
| :--- | :--- |
| 1 | Monomial |
| 2 | Binomial |
| 3 | Trinomial |
| | |
| Degree | |
| 0 | Constant |
| 1 | Linear |
| 2 | Quadratic |
| 3 | Cubic |
| 4 \& up | $4^{\text {th }}$ degree |

$8 t^{2}-2$

Quadratic binomial

$$
\left(7 v^{3}-3 v+8\right)+\left(-2 v^{3}+v-3\right)
$$

$$
5 v^{3}-2 v+5
$$

cubic trinomial

Simplify and write in standard form. Then name based on degree and number of terms:

Degree	
0	Constant
1	Linear
2	Quadratic
3	Cubic
$4 \&$ up	$4^{\text {th }}$ degree

$$
\begin{aligned}
& \frac{\left(4 x^{3}+3 x+11\right) \cdot\left(-6 x^{3}+3 x-2\right)}{+6 x^{-}-3 x+2} \\
& 10 x^{3}+3
\end{aligned}
$$

cubic binomial

Simplify and write in standard form:

$$
\begin{aligned}
& 8 m^{2}+36 m^{3}-24 m \\
& \text { Stand aura } \text { form } 36 m^{3}+8 m^{2}-24 m
\end{aligned}
$$

$$
\begin{aligned}
& -2 n^{2}\left(5 n-9+4 n^{2}\right) \\
& -10 n^{3}+18 n^{2}-8 n^{4}
\end{aligned}
$$

$$
\text { standard } \underset{\substack{\text { for }}}{ }-8 n^{4}-10 n^{3}+18 n^{2}
$$

Simplify and write in standard form:	
FOIL	$(w+2)(w+12)$
	$w^{2}+12 w+2 w+24$
	$w^{2}+14 w+24$

Simplify and write in standard form:		
$(3 s+5)^{2}$		
square double square	$(3 s+5)(3 s+5)$	
$9 s^{2}+30 s+25$	$9 s^{2}+15 s+15 s+25$	
	$9 s^{2}+30 s+25$	

Simplify the product:

$10 x^{3}-8 x^{2}+12 x$

$$
15 x^{2}-12 x+18
$$

$$
10 x^{3}+7 x^{2}+18
$$

A rectangle has dimensions $3 x+5$ and $x+7$. Write an expression for the area-of the rectangle. Then write as a polynomial.

Factor:

$$
h^{3}\left(11 h^{4}-9 h^{3}\right.
$$

Difference of squares	Factor:
$32 x^{2}-8$	
$8\left(4 x^{2}-1\right)$	
	$8(2 x-1)(2 x+1)$

Perfect	Factor:
Square	$25 x^{2}+80 x+64$
trinomial	$5^{2} \quad 8^{2}$
	$(5 x+8)^{2}$

Perfect Factor: square $6^{36 x^{2}-12 x+1}(-1)^{2}$
trinom

$$
(6 x-1)^{2}
$$

Factor:
$\left(2 x^{3}-3 x^{x}(+8 x-12)\right.$
$x^{2}(2 x-3)+4(2 x-3)$
$\left(x^{2}+4\right)(2 x-3)$

Factor:
$\left.\left(15 x^{3}+25 x^{2}\right) \cdot 6 x-10\right)$
$5 x^{2}(3 x+5)-2(3 x+5)$
$\left(5 x^{2}-2\right)(3 x+5)$

What is the first step when factoring a polynomial?

Which factoring method is best when there is a 4-term polynomial?

